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Ahstrac6Taylor diffusion in laminar flow along a straight pipe, the cross-section of which is an eccentric 
annulus, is studied analytically by an exact method which in principle is valid for all values of time. An 
expression is obtained for the apparent diffusion coefficient K, and is evaluated numerically for a wide 
range of values of the eccentricity 4 and radius ratio p. 

The apparent diffusion coefficient is inherently time dependent. However, because of the complexity 
of the equation that describes laminar convective diffusion in an eccentric annulus, the numerical results 
are limited to asymptotic values of K,, that is, to dimensionless times r large enough for K, to be effectively 
a constant independent of time. To estimate the value r,, above which T is sufficient for this. an approxi- 
mation which is excellent at large values of p, and moderately good for small values of p, is employed for 
small eccentricities. The results of this calculation are correlated by the formula 

rm z 31 K,O.93. 

It is found that eccentricity has an enormous effect on the asymptotic value of K,. For example, with 
p = 1.5, the value of K, for 4 = 05 is approximately 250 times that for a concentric annulus. This remark- 
able result suggests that eccentricities in the interstices of packed beds may contribute significantly to 

the scatter of the experimental values of the apparent diNusion coefficient reported previously. 

NOMENCLATURE 

tube radius ; 
constant given by equation (7b) ; 
constant given by equation (32b) ; 
constant given by equation (32~) ; 
constant given by equation (7b) ; 
half the distance between poles in 
the bipolar coordinate system ; 
point concentration of solute ; 
mean concentration over a cross 
section ; 
initial concentration of solute in 
slug ; 
expansion coeffkients defined by 
equation (40) ; 
binary diffusion coefficient ; 
distance between the centers of 
the two circles in an eccentric 
annulus ; 
constant given by equation (7b) ; 
functions defined by equations 
(13) (19a)-(19c), (20) and (21); 

_fi,Lti~ 

F. 

K2’, 

N PI? 
N ’ PC! 3 

0, 
P, 
r1, 
r2* 

h 

u, 

steady and transient parts respec- 
tively off, as defined in equation 
(29) : 
constant given by equation (7b); 

J- 1; 
, dimensionless coeffkients occur- 

ring in the generalized dispersion 
model, equation (16) ; 
dimensionless dispersion coefti- 
cient based on outer radius r2 as 
reference length ; defined by 
equation (34); 
PC&t number : 2r,u,/D ; 
dimensionless group analogous 
to PCclet number : cu,/D ; 
origin ; 
pressure ; 
radius of inner circle of annulus ; 
radius of outer circle of annulus ; 
time ; 
dimensionless velocity in z direc- 
tion defined by equation (7a); 
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uo. 

V Z’ 

Vo, 

V maxi 

K 

V max 1 

L y, 

X, 

X,, 

Xl. 

Greek letters 
a, 

Y. 
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dimensionless average velocity 
defined by equation (8) ; 
velocity of fluid in z direction ; 
average velocity in z direction ; 
maximum velocity in z direction ; 
dimensionless velocity in z direc- 
tion defined on average velocity 
as basis by equation (9a) ; 
dimensionless maximum velo- 
city : 2imaxjvo ; 
Cartesian transverse coordinates 
as defined in Fig. 1; 
dimensionless axial distance de- 
fined in equation (9d) ; 
dimensionless slug length 

Dz,ic2~g ; 
dimensionless axial distance 
measured from a plane moving 
with the average velocity of flow, 
x, = x - r; 
eigenfunctions defined by equa- 
tions (39) and (39a); 
axial coordinate ; 
slug length. 

r] coordinate for the inner circle 
in the eccentric annulus in bi- 
polar system ; defined by equa- 
tion (6b) ; 
q coordinate for the outer circle 
in the eccentric annulus in bi- 
polar system ; defined by equa- 
tion (6~) ; 
inner radius/outer radius as de- 
fined in equation (5b); also used 
as dummy variable in integra- 
tions ; 
coordinate defined by equation 
(27) ; 
bipolar coordinate ; related to 
Cartesian coordinates by equa- 
tion (4~) ; 
dimensionless concentration de- 
fined in equation (9b) : 

8 In’ 

ic. 

%i=2,3 

5, 

dimensionless mean concentra- 
tion defined by equation (14) ; 
Taylor dispersion coefficient ; 
coefficients occurring in a gener- 
alized dispersion mode1 ; 
eigenvalues of Sturm-Liouville 
problem defined byequations (39) 
and (39a) ; 
viscosity of fluid ; 
bipolar coordinate related to 
Cartesian coordinates by equa- 
tion (4d) ; 
outer radius/inner radius. 

p = (1i-y); 
dimensionless time defined in 
equation (9c) ; 
eccentricity as defined by equa- 
tion (5a) ; 
constant defined by equation 
(32a). 

G. I. TAYLOR [13] first published a mathe- 
matical analysis of unsteady convective diffusion 
in a straight capillary. He considered a tube 
initially filled with fluid A into which a slug of 
arbitrary length of fluid B is introduced and the 
two fluids flow along the direction of the tube 
axis and mix with each other. Taylor showed 
that after a certain amount of time has elapsed, 
the mean concentration of solute B, which is 
miscible with and dispersed in fluid A, behaves 
as though it were diffusing with respect to a 
a plane moving at the mean speed of flow but 
with an apparent diffusion, or dispersion co- 
efficient, K for which he deduced the explicit 
expression 

a2v02 

IC=48D 

Aris [1] used an integral approach to genera- 
lize Taylor’s results to include the effect of axial 
molecular diffusion which adds linearly to give 

&)+a/VOL 
480 
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Aris also showed how dispersion in a more 
general geometry could be analyzed by using 
the method of moments. These results can be 
used in conjunction with the one dimensional 
dispersion model 

ac m 
at 

ac, + UOyjJ- =Ic 

to describe the mean concentration of B as a 
function of time and axial position. 

Carrier [2] and Lighthill [6] also have 
analyzed the unsteady convective diffusion 
problem. Carrier obtained a solution for the 
case involving a periodic concentration input to 
the system and Lighthill found a solution valid 
for short periods of time for a step change input 
in concentration. 

Gill [3] generalized Taylor’s work by propos- 
ing a series expansion about the mean concen- 
tration to describe the local concentration 
distribution. This approach also led to an 
expression for the dispersion coefficient which 
reduced to Taylor’s result in the limit of large 
P&cl& numbers and to Aris’ result for small 
Ptcltt numbers where axial molecular diffusion 
is significant. 

It was a natural step to extend the concept of a 
dispersion model to various other flow geo- 
metries. Philip [lo] analyzed dispersion in a 
parallel plate duct to obtain an expression for 
the dispersion coefficient. Recently Nunge et al. 
[ 81 have analyzed dispersion in curved tubes and 
channels and Gill et al. [5] solved the problem 
for a concentric annulus and Jeffrey-Hamel 
flows using Taylor-type dispersion models. 
Nunge and Gill [9] discussed the applicability 
of the results of the analyses of simple geo- 
metries to modelbng the dispersion process in 
porous media. 

Gill and Sankarasubramanian [4] have shown 
recently that the series expansion mentioned 
previously provides an exact solution of the 
unsteady laminar convective diffusion problem 
for flow in a circular tube and that the apparent 
diffusion coefficient varies in a predictable way 
with time. A generalized dispersion model for 

the area average concentration C, which is 
given by 

ac m sic 
at + uOa+ = 5 Ki(t) -j-f 

z i=2 . - 
evolves as a natural consequence of their 
analysis. Obviously, this model contains a set 
of apparent diffusion coefficients 1Cb the principal 
component of which is rc2 and this coefficient is 
identical to K in Taylor’s analysis. It is the 
purpose of the present work to extend this 
technique to the analysis of Taylor diffusion in 
an eccentric annulus. An expression for the 
dimensionless form of JQ, K2, which appears as 
one of the eigenvalues in the problem, will be 
developed and the influence of the radius ratio 
and eccentricity parameter on the asymptotic 
value of K, will be determined. The results show 
that this dispersion coefficient is surprisingly 
sensitive to the degree of eccentricity of the 
system. This may have significant practical 
implications for transport processes in porous 
media. 

ANALYSIS 

For the eccentric annulus. shown in Fig. 1. 
the boundary conditions cannot be expressed 
in cylindrical coordinates at a constant value 
of one independent space variable. This difficulty 
can be overcome by using a bipolar coordinate 
system which is discussed in detail by Moon 
and Spencer [ 71, and has been used in previous 
analyses of transport processes in eccentric 
annuli. 

For fully developed steady laminar flow in 
the z direction of a fluid with constant physical 
properties and no transverse velocity com- 
ponents, the convective diffusion equation is 

ac dt+U’+l $+E+Z. [ 
2 

a3 1 
(1) 

Consider the dispersion of a slug which is 
initially z, units in length and of uniform con- 
centration Co. For this, the boundary and 
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Fr;. 1. Eccentric annulus geometry. 

initial conditions may be written as 

C(0, z, x, y) = c,. I z) < $z, 

C(O,z,x,y) = 0, IZI > fz, (2) 

C(kaL&Y) = 0 

aC ac - 
an innerwall= an = 

0 
O”M wall I 

where n represents the direction normal to the 
walls. Also, by symmetry, 

X - 
ay y=(j = 

0. 

The bipolar coordinates (5, q) are defined by 

5 + iv 
x + iy = iccot -2- ( > (3) 

from which one may derive the following 
relationships : 

x= 
c sinh r] 

cash q - cos 5 
Pa) 

c sin 5 
Y= cash r7 - cos t 

,Q _ Y2 + (x + c)2 - 
y2 + (x - c)2 

tan < = 2YC 
x2 + y2 - c2 

(4b) 

(4) 

W) 

C2 

y2 + (x - c coth v)2 = - 
sinh2q’ (W 

Equation (4e) shows that lines of con- 
stant q are circles in the .uY plane with center 
(c coth ‘1, 0) and radius (c/sinh q). So, in the 
(5, q) system, the inner circle may be represented 
by a line q = c1 and the outer circle by a line 
q = j?. 

Defining 

(W 

the following results are established imme- 
diately : 

c = rl sinh a = r2 sinh j? @a) 

cosh a = lY(’ + &2) + t1 - 42) 
Y 24 

(6b) 

cash jj’ = Y(1 - 42; (1 + 42). (6c) 

LJsing the above transformations, Snyder and 
Goldstein [ 121 obtained the laminar flow steady 
state velocity distribution in dimensionless form 
as 

coth rj 
U=F+Ep2 + f {A,e”‘l 

n=l 

+ (B, - cothq)e-““} cos n< (7) 
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where ables may be defined as : 

u= vz 
-c2 dP c 1 --- 

P dz 

and F, E, A,, B, are given as: 

(74 

F 
a coth /I - /? coth a 

= 
2(a - p) ’ 

Dt 
z =- 

c2 

E = coth a - coth fi 

2(a - B) 

Dz 
x=7 

c 00 
(94 

A = cotha - cothj?. so that equation (l), and the boundary condi- 
n @a _ $3 ’ tions (2), may be transformed to the bipolar 

e2”’ coth /3 - e2@ coth a system and represented in dimensionless form 
B, = prr _ e2ng (7b) as: 

The element of area dA in the (5, q) system is 
z+ V(&rj)g = (coshq - 
ar 

cos <)2 

given by 

dxdy = dA = 
c2 

(cash tj - cos 5)2 
d5dq with 

and the average dimensionless velocity is given 

Bn ss c2V d<dq _ 

(cash rj - cos <? 

tJo=;; 

ss 

c’d<drj 

(cash q - cos 5)2 
110 

B n 

2 1 

= II [cosech2 a - cosech’ p] 

Udtdtl 
(cash r] - cos t)2 

ae de 
x <=o = ag <En = O I I 
where 

NPe’ = % = (4 sinh P)NPe (124 

and Np, is the PCclet number defined as 

2r2vo 
N,, = - 

D ’ 

(11) 

WV 

Now, let 

where the integration with respect to < is per- 
formed in the interval (0, x) instead of (0, 274 
because of symmetry. New dimensionless vari- 
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where the dimensionless mean concentration 
em is, 

Bn 

sf 
8c2d<dr] 

o1 ,(cosh ?j - cos Q2 
e,(r. X) = B r( 

ss 

c2d5dq 

(cash rj - cos o2 
a0 

Bn 

2 1 ed5drl 

= 71 [cosech2a - cosech’j?] ss (cash q - cos 5)2’ 
UO 

(14) 

and integrated over the cross section of the 
eccentric annulus. If one then introduces equa- 
tion (13) into the result, the following generalized 
dispersion model is obtained : 

aem ” 
aT - c K,(T) 2. (16) 

i=l 

By differentiating this with respect to X, k 
times, we obtain 

m 
ak+le 

-=I aTax" Ki(T) 
ai+;em 
ax’+“’ (17) 

i= 1 . 1 
When equation (13) is substituted into equa- 

tion (lo), the result is 
It should be emphasized that the dispersion 

To develop an exact dispersion model, equa- model, given by equation (16), is a direct conse- 
tion (10) is multiplied throughout by the ele- quence of integrating the convective diffusion 
mental area equation (10) and does not involve any arbitrary 

c’dtdrj 
assumptions. 

(cash q - cos o2 
Equations (16) and (17) are substituted into 

equation (15) to give, after some rearrangement, 

+ afk+2 
ar-- - (cash r/ - cos <)2 

a2f L+2 --Fir 
> 

t=1 

kf2 

+ vfk+l + 
c 

(18) 

i=l 
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with the understanding that f0 = 1. If equation rl = a to q = /I, invoke the conditions repre- 
(18) is satisfied by setting the coefficients of sented by equations (21) and (22), we get 
(&3,/8X”) to zero for k = 1,2,3 . . . the following 
system of equations is generated : 

- w, ?) - Kl(4 (194 
with equation (23) one can show that 

K, = - 1. (24a) 
ai2 Zr=(cosh~-cos5)2@+$$} If a similar procedure is applied to equations 

(19b) and (19c) we get the following expressions 

- V(L rllfi + A 
for the eigenvalues K, and &+ 2, k = 1,2, . . . as : 

‘YPtT 1 -I 4 

K,(z) = + - b 
1 

- Kl(rY1 - K,(7) Wb) Pe x [cosech2a - cosech2b] 

and 

as+2 __ = 
aT (cash q - cos {)2 

Bn ss Vfl 
(cash q - cos o2 

d&h Wb) 
UO 

and 

k+2 K,+2(r) = - 4 
1 

- izlXifk+2-irk = 1,273.. . (19c) 

From the boundary conditions (1 l), the fk(z, 5, q) 

n [cosech2a - cosech’fl] 
Bn 

Vh+1 
d5dq (24~) 

ss (cash q - cos # 
a0 

must satisfy the following conditions : 

fk(O, 5, d = 0 (20) 
k = 1,2,3... 

afk afk 
ayI q=a = a_rl q=/J = I I 0 Since it is difficult to solve for f2, or the 

(21) higher order functions, and since it has been 
shown by Gill and Sankarasubramanian [4] 
that truncating the series in equation (16) after 
the first two terms causes a negligible amount 

In addition, the definition of 6, requires that 
of error for the case of a straight tube, we will 
adopt the same procedure here. The truncated 

Bn form of equation (16) after substituting for K, 
o t221 from equation (24a) is : 
' 

CO a28 

If we multiply equation (19a) throughout by 
2 + f$ = K,(r) -$ (25) 

1 

(cash q - cos Q2’ 
integrate with respect to 5 Except for the time dependence of K,, which 

makes it valid for small r, equation (25) is the 
from 5 = 0 to 5 = 71 and with respect to rl from equation Taylor used in his original work. This 
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is to be solved with the boundary conditions 

e,(o, x) = I, 1x1 G +x, 

I 

(26) 

e,(o,x)=o. 1x1 > ix, 

and 

em(T, 00) = 0. J 
If one defines 

r = bK,WY 
the well-known solution to equations 
(26) may be written as 

(27) 

(25) and 

where 

x, = x-z. (284 

Equation (24b) shows that K, depends on 
jr, but solving for the complete fl function 
analytically is a difficult task and so we will 
solve only for the steady-state part, fsl, of this 
function. At a later stage, an approximate 
theory will be given which enables one to 
determine the magnitude of z necessary for 
fi x f,,, for small eccentricities, and we will thus 
determine the region of applicability of the 
present analysis. Under these conditions, the 
dispersion coefficient K, has reached its asymp- 
totic value and the constant dispersion coeffr- 
cient model is valid. 

The f, function may be separated into steady 
and transient parts, such that 

f, = L,(5? ?) + L,(r, 5, V). (29) 

The equation for f,, is then, upon using the 
value of K, from equation (24a), 

a%,+%= v- 1 

at2 at+ (cash v - cos 5)’ 
(30) 

The appropriate boundary conditions are 

0 

af,, afs,, 

I I 

(31) 

at t_0 =~_ = 
0 

Sankarasubramanian [ 1 l] has solved equa- 
tion (30), along with equation (31) by using a 
cosine transform technique in the 5 coordinate. 
The solution is 

L, = $$ + /(v - j(,,~;‘;)cos& d5’dy 

+~~{~AI,,+&/e+’ 
01 

x ’ W(<‘, Y) - 13 cos Cd<’ dy e,,,, 

s (cash y - cos <‘)2 1 
0 

9 

x n [V(t’, Y) - llcos n5’dC 

s (cash y - cos 5’)’ 
0 

where 

cos n5 

(32) 

1 
* = 2(@ - fl) - 2YB - r”I 

CC0 

V(C, Y) - 1 

(cash y - cos 5’)’ 
dt’dy (32a) 

A,,, = 
1 

2n(ezna - e2@) 
L 
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+ 

a 0 VW 
and 

A,, = e2”‘AIn. (32~) 

&(5, q), as given in equation (32), can be used 
in equation (24b), to determine asymptotic 
values of the dimensionless dispersion coeffi- 
cient K,. 

DISCUSSION OF RESULTS 

K, was evaluated numerically for fj ranging 
from OGO5 to 0.9 and p ranging from 1.25 to 
100. In these computations, the contribution to 
K2 due to axial molecular diffusion, represented 
by (l/N,,,“), has been omitted since this contri- 
bution can be added directly to the values 
presented. 

K, was evaluated from equation (24b) by 
using double precision and Simpson’s rule for 
the numerical integrations. The number of 
significant figures was determined by using 
different step lengths at the extreme values of 
the parameters. The accuracy of the dimension- 
less velocity and the f,, function was estimated 
by varying the number of terms used in the series 
for these functions. 

At the higher eccentricities, both the series for 
the jsl function and that for the dimensionless 
velocity converge very slowly. Also, a larger 
number of steps is required to obtain sufficient 
accuracy in the numerical integrations. This 
requires prohibitively large amounts of com- 
puter time, and so only a limited number of 
results were obtained for 4 = 0.9. At this value 
of eccentricity this problem is very severe and 
the results obtained are accurate only to within 
5 per cent, but this is satisfactory to indicate 
trends reliably. 

The dimensionless dispersion coefficient K, 
is based on c as reference length, 

K2 = 
ICD 

2 
c 00 

(33) 

Because its physical significance is much clearer 
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for presentation and comparison purposes, the 
outer radius, r2 is chosen as the reference length 
and a new dimensionless dispersion coefficient 
K,’ is defined as 

K,’ = 
UD 

2 = K, sinh2j3. (34) 
12 vo 

The axial diffusion contribution which has been 
omitted, correspondingly becomes 

1 4 
-sinh2fi = - 
NPt? NPe2’ 

The calculated values of K,’ have been 
tabulated in [ll] and are plotted against p 
with 4 as the parameter in Fig. 2. It is seen that 
eccentricity can have an enormous effect on the 
dispersion process. The values of K,’ for the 

‘0 
I 

-c 

FIG. 2. 

L--- 23 5 

* 
I 0 

5 g:“oy 
4 0.02 
5 0.05 
6 0.10 
7 0.20 

- 6 0.50 _ 

20 30 50 0 

Behavior of dispersion coefficient, K,'x 104, as a 
function of radius ratio, p. and eccentricity, 4. 
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concentric annulus from the results of Gill et eccentric annulus with C#J = 0.1 and 0.5 respec- 
al. [S] also are plotted in the same figure. tively ; p = 5 in all cases. The eccentric annulus 

&, = 0 cannot be used for calculations in profiles are given at a section at r = 0 and 5 = n, 
bipolar co-ordinates since this is a singular that is, on theX axis. 
point for the transformation given in equation Note that the velocity profiles become more 
(3). However, the results obtained for C$ = 0.005 asymmetric as the eccentricity increases. Differ- 
by the present approach are in excellent agree- ences in the velocity at different angular loca- 
ment with those for & = 0 given in [5] for all tions, and over the cross section at any one 
radius ratios investigated. angular location become more pronounced 

(a) 

Dimensionless radius, r/r* 
(bl (Cl 

FE. 3. Comparison of velocity profiles for increasing 
eccentricity for a given radius ratio, p = 5 at sections at 

5 = Oand < = x. 

Although the complexities of the flow pattern 
in an eccentric annulus make an exact inter- 
pretation of the results represented in Fig. 2 
extremely difficult, an attempt is made here to 
explain quali~tively, the behavior of the dis- 
persion coefficient. 

The first characteristic of interest is the 
increase in the value of the dispersion coefficient 
with increasing eccentricity for any radius ratio. 
This is explained by considering the velocity 
profiles shown in Fig. 3. Figure 3a gives the 
dimensionless velocity distribution for a con- 
centric annulus and Figs. 3b and c for the 

with increasing eccentricity and cause an in- 
crease in the value of the dispersion coefficient. 
However, as the velocity differences become 
greater with increasing eccentricity, transverse 
di~usion starts playing a more important role 
in suppressing the extent of axial dispersion and 
above C#J = O-5, the dispersion coefficient shows 
a definite decrease with increasing eccentricity 
as confirmed by the limited results available at 
4 = 09. It is seen also that the relative increase 
in the dispersion coefficient with increasing 
eccentricity is far greater for smali p than for 
large p. The reason is as follows: for a fixed 
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value of the outer radius r2, the radius of the 
inner circle and hence its size get smaller with 
increasing p. A displa~ment of this inner circle 
from a concentric position when it is smaller 
has less effect on the velocity field and therefore 
on the dispersion process. In fact, when p = 100, 
the inner circle is but a spot inside the outer 
circle and there is practically no effect on the 
dispersion coefficient as 4 increases from 0 to 
0.1 as observed in Fig. 2. 

Another characteristic which should be noted 
in Fig. 2 is the minimum exhibited in the plots 
for 4 = 0.05,0*1 and 0.2. Such a minimum may 
very well exist for other eccentricities also, but 
it was not observed in the range of radius ratios 
investigated. Note also that this minimum shifts 
toward larger values of p as CpI increases. 

In an effort to explain this behavior, the 
dimensionless velocity, V,, = (v,,,,/L+,), was 
computed for the same range of the parameters 
Cp and p for which K,’ has been calculated. The 
plot of V,, vs. p with eccentricity 4 as para- 
meter is presented as Fig. 4. It is seen that the 
behavior of K;, and V,,, vs. p is similar for each 

‘- 

value of eccentricity and in each case the curves 
exhibit minima at about the same value of p. 
Since the extent of axial dispersion, as pointed 
out previously, depends strongly on velocity 
differences over the cross section and since the 
ratio of maximum velocity to average velocity 
is an index of such differences, the dispersion 
coefficient behaves in sympathy with this ratio. 

A qualitative perspective of the magnitude of 
the effect of eccentricity on the dispersion process 
can be obtained from Fig. 5 in which eccentric 
annuli are drawn to scale and the respective 
values of K,’ for each annulus is shown. Most 
dramatic, perhaps, is the 25fold increase in the 
dispersion coefficient which occurs when 4 is 
changed from 0 to 01 at p = 15 and the eccen- 
tricity is barely perceptible by eye. 

An important objective of studies of disper- 
sion in relatively simple geometries is to suggest 
effects which may be significant in very compli- 
cated systems such as packed beds which occur 
in commercial applications. It seems relatively 
safe to speculate, on the basis of the very large 
effects observed in the present work, that eccen- 
tricities in the interstitial flow passages created 
by the arrangement of the particles in packed 
systems may contribute significantly to the 
scatter of the data which have appeared in the 
literature. 

APPROXIMATION FOR SMALL 
EccEm- 

A deeper underst~ding of dispersion in 
eccentric annuli can be obtained if the mathe- 
matical aspects of the problem are reduced by 
considering an important asymptotic case. In 
the limiting case as # + 0, 

ac d2C d2C 
zf’ x2 a2 

where 8 is the angular coordinate in a cylindrical 
coordinate system with its origin at the common 
center of the two circles. For a concentric 
annulus, due to angular symme~y, 

Fw. 4. Behavior of dimensionless maximum velocity. Vm,. 
as a function of radius ratio, p, and eccentricity, 4. 

ac d2c o ----_ 
a8 - ae2 
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FIG. 5. Scale drawings illustrating the effect of radius ratio, 
p, and eccentricity, C#J. on dispersion coeffkient, K,‘. 

and for the eccentric annulus with small 
eccentricities, the 5 dependence may be neg- 
lected. Accordingly, the 5 dependent part of the 
f,, function is small and may be neglected in 
using equation (24b) to calculate K,. This 
approximation was used to calculate K,’ for 
small eccentricities in the region 4 = OGO5~.1; 
it was found, as expected, that the approximate 
values approach the exact value as 4 + 0. It 
was also found that the approximation is 
increasingly better for larger p. Table 1 gives 
some sample values of K2’, expressed as a 
percentage of the exact value, which were cal- 
culated using the small Q, approximation. This 
approximation will now be used to establish 

Table 1. Dispersion coefficient K,’ calculated using approxi- 
mation for small eccentricities expressed as a percentage 

of the exact value 

\ 

\ 
P 

1.25 5.0 100.0 

9 ,\\ 

0005 82.92 99.8 99.98 
0.02 23.3 96.88 99.61 
0.1 1.24 55.54 92.48 

criteria for the dimensionless time required for 
the steady state dispersion coefficient to be 
valid. In the calculation of K,, only the steady 
state part, f,,, of the fi function has been used 
and therefore the results apply only for large 
values of time. Consequently it is desirable to 
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estimate the magnitude of r required for the 
steady state function to be dominant so that 
K, becomes independent of time. To do this we 
shall employ the small eccentricity approxima- 
tion to solve for f,, 

MINIMUM TIME REQUIRED FOR THE 
DISPERSION COEFFICIENT TO BECOME 

CONSTANT 

The equation for the transient part,f,,, of the 
f, function is : 

%I aZ - (cash q - cos 5) #+ $1. (35) 

This is a very difficult equation to solve exactly 
and so we resort to approximations. For the 
case of small eccentricities, both cash a and 
cash /I are very large compared to unity [see 
equations (6b) and (6c)] which is the upper 
bound on ) cos 5 1 and so, cos 5 may be neglected 
compared to cash q. In addition, (a2&/a~2) may 
be dropped for reasons discussed in the last 
section and so we may write, for small eccen- 
tricities. 

af, w - = co&$ ___A 
aT a+ (36) 

with the conditions, 
, 

at,, ai, 
all _ = a? rl=8 = I I 0 I (37) 

.fm v) = - _&$I) J 
where the 5 dependent part off,, also has been 
neglected. With these approximations, the solu- 
tion forf;, can be written as 

f;, = %d,,e-“” X,(V) (38) 

where Y, satisfies 

f,, = die-“’ Y,(q). (42) 

This approximation was used to compare the 
relative magnitudes of If,, 1 and Ifs, 1 averaged 
over the interval (a, 8) to determine the value 
of dimensionless time z when the transient 
becomes negligible compared to the steady 
state solution. The value of z so obtained is the 
minimum dimensionless time, z,, required for 
the dispersion coefhcient to assume a constant 
value independent of z. The results obtained by 
solving equations (39) and (39a) can be correlated 
with reasonable accuracy by the following 
approximate relation 

and 

x” + ;1, sech2q x = 0 (39) 

rm w 31 K,O? (43) 

Since eccentricity may increase K, by several 
orders of magnitude, it also increases markedly 
the residence time required for a constant 
coefficient dispersion model to apply. 

CONCLUSIONS 

K’(a) = y,‘(B) = 0. (39a) As a result of the present study, the following 

Equations (39) and (39a) constitute a Sturm- 
Liouville system which will give rise to the 
eigenvalues I,, and eigenfunctions Y,. The 
expansion coefficients d, will be given by 

!X,(?)K(~)sechz? d? 
d,= - ap 

i Y:(v) sech’v dv 

(40) 
The approximate form for f,, which neglects 5 
dependence obeys 

i_&,(tl) sech’tl drl = 0 (41) 

which is also the result one would obtain from 
equation (22) for small eccentricity. 

For the system of equations (39) and (39a), 
&, = 0 and Y0 = 1 and therefore from equations 
(40) and (41) d, = 0. Consequently, for large 
values of dimensionless time, we may truncate 
the series forLl and obtain 
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observations may be made about the behavior 
of the dispersion coefficient. 

1. The steady state dispersion coefficient, 
which is the asymptotic value of K, for large 
time, increases with increasing eccentricity C#I 
and reaches a maximum at a value of 4 above 
0.5: then it decreases with further increase in $I. 
Such behavior is exhibited for all radius ratios 
investigated. However, the dispersion coefficient 
is much more sensitive to eccentricity for small 
values of radius ratio p; that is, the sensitivity is 
greater when the inner circle of the annulus is 
relatively large. The flow rate in an eccentric 
annulus for a given pressure gradient exhibits 
similar behavior, but it is not as dramatic as it 
is for the dispersion coefficient. 

2. For values of 4 between O-05 and 0.2, the 
dispersion coefficient, when plotted against 
radius ratio p, at first decreases with increasing 
p, reaches a minimum at a certain value of p, 
and then starts increasing as p is increased 
further. The location of this minimum shifts in 
the direction of increasing p as eccentricity 
increases. Such a minimum may very well 
exist for q5 < 0.05 and C#I > 0.2 but it is not 
observed in the range of radius ratios investi- 
gated here. Interestingly, it turns out that the 
above behaviour is in sympathy with that of the 
ratio (u,,,juJ with & and p. 

3. For small eccentricities, some approxima- 
tions may be made which are excellent for large 
p and enable one to estimate the minimum 
dimensionless time q,, above which K, is effec- 
tively constant. 

4. The extremely large effect of eccentricity 
in annuli on the magnitude of the dispersion 
coefficient suggest that eccentricities in the 

interstitial flow passages created by the arrange- 
ment of particles in packed beds may contribute 
significantly to the scatter of the data that have 
been reported in the literature. 
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DIFFUSION DE TAYLOR AU SEIN D’UN l?COULEMENT LAMINAIRE DANS UN 
ESPACE ANNULAIRE EXCENTRIQUE 

R&sum&G&e & une mtthode exacte, qui en principe est valable pour toutes les valeurs du temps, on 
Ctudie de fagon analytique la diffusion de Taylor dans un Ccoulement laminaire le long d’un tube rectiligne 
dont la section droite est un anneau excentrique. on obtient une expression du coefficient K2 de diffusion 
apparente et on 1’8value numkriquement pour un large domaine de l’excentricitk 4 et du rapport des 
rayons p. 

Le coeffclent de diffusion apparente est d&pendant du temps. Cependant, g cause de la complexitt de 
l’tquation dtcrivant la diffusion convective laminaire dans un anneau excentrique, les rtsultats numCriques 
sont limit&s B des valeurs asymptotiques de KZ correspondant g des temps adimensionnels T suff~samment 
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grands pour que K, puisse &tre effectivement une constante indkpendante du temps. A!in d’estimer la 
valeur 5, au dessus de laquelle ‘L correspond B cette condition on emploie, pour des petites excentricitbs, 
une approximation qui est excellente pour des grandes valeurs de p et modCrCment bonne pour des petites 
valeurs de p. Les rCsultats de ce calcul sont reli&s par la formule: 

On montre que l’excentricitk a un effet considCrable sur la valeur asymptotique de K,. Par exemple, avec 
p = 1,5 et 4 = 0,5, la valeur de K, vaut approximativement 250 fois celle relative gun anneau concentrique. 
Ce rCsultats remarquable suggtre que des excentricitts dans les grappes peuvent contribuer de fapon 
significatrice g la dispersion des valeurs expkrimentales du coefficient de diffusion apparentes rapport&es 

auparavant. 

TAYLOR-DIFFUSION IN EINEM EXZENT.RISCHEN RINGSPALT BE1 
LAMINARER STRbMUNG 

Zusammenfassung-Es wird die Taylor-Diffusion bei laminarer Striimung entlang eines geraden Rohres 
mit exzentrischem Ringspaltquerschnitt analytisch mit Hilfe einer exakten Methode untersuchf die im 
Prinzip fiir alle Zeitpunkte giiltig ist. Man erhalt eine Formel fiir den scheinbaren Diffusionskoeffienten 
K,, die fti einen weiten Bereich der Exzentrizitlt 4 und des Radienverhlltnisses rp numerisch ausgewertet 
wird. 

Der scheinbare Diffusionskoefflzient ist an sich zeitabhlngig, es werden jedoch die numerischen 
Ergebnisse wegen der Komplexit& der den Fall laminarer, konvektiver Diffusion in einem exzentrischen 
Ringquerschnitt beschreibenden Gleichungen auf asymptotische Werte fiir K, beschriinkt, d.h. auf 
dimensionslose Zeiten 7, die so gross sind, dass K, effektiv eine von der Zeit unabhangige Konstante wird. 
Zur Abschtitzung des Wertes ra, oberhalb dessen r dieser Beziehung genii@, wird fiir kleine Exzentrizitiiten 
eine Ngherungsbeziehung verwendet, die fiir grosse Werte von cp mlssig gut geeignet ist. Die Ergebnisse 
dieser Berechnung lassen sich durch die Formel 

t, 2 31 K o.y3 2 
korrelieren. Es zeigte sich, dass die Exzentrizitgt einen enormen Einfluss auf den asymptotischen Wert 
von K, hat. Zum Beispiel ist fti cp = 1,5 und 4 = 0,5 der Wert von K, ungefihr 250 ma1 griisser als der 
fiir einen konzentrischen Ringspalt Dieses bemerkenswerte Ergebnis l&t vermuten, dass Exentrizitaten 
in den Zwischenrlumen von Festbetten ganz betrachtlich zur Streuung der kiirzlich mitgeteilten experi- 

mentellen Werte fiirden scheinbaren Diffusionskoefflzienten beitragen kiinnen. 

~HHOTaqlrJi-~ICC~e~OBaJlacb aH~JIIlTIl’ttXlill C IIOhlO~bfO TOYHOrO MeTuJJ_a, tzOTopbIfi B 

npnu~Ifne nI3nneTCFI TowfbIhl ;IJIH BCeX 3HaqeHIIii BpeMeIfIr, ~Il~~y311~f Teiinopa B ;IaMIlifapHoM 
noTof<e sepea npfmyfo ~py6y. nonepevrfbf~ ceverIIIe,r IiOTOpOI'i HBmfeTcR 3tic~ekfTpwfecmti 

HO.-IbqeBOti 3a3Op. nO.2yYelIO BLI,lpaHietiIle AJIFf 3~~eI~TIIB110IYl HO3c)~II~IIefIT~ ~II~~y31111 Hz 11 

paccwiTaH0 wlcneHff0 x;rff LLIll}J0Ii0IY7 xIIam3offa :IrIaseffIrfi 3IEc~eHT~)II'ftrocTII 4 II oTrfoIffeIfI1~ 

panliyca p. 

3@$eKTIlBHOMy K03@#lIIl&IletiTy ~III#l@y3IlIl npIlCj2L(a 3aBIICIIhlOCTL OT BpehIeHII. OJ(HatiO, 

II3-3a CJfOifCIfOCTIl ypaBEfeHwf, OnIlCLIBaIOLL(er0 JfHhlIIHapHyH) IEOHBeHTIIBHJYO ~II@@y3IlIO B 

3xqeffTpwfecKoM Konbuef3oM aasope, WiCJfeHHLIe pe3ynbTaTbI OrpaHIVfeHbI JO aCIIMnTOTLI- 

YeCtiIIX 3HaqeHId &,T.e.RO 6e3pa3MepHLIX BpeMeH 7,AOCTaTO'fHO 6OJfbIffHX~JJf TOrO 'fTO6LI 

Hz 6bIJIO ffOCTOHHHOir BeJIIIWI~fOti, He 3aBIICRLL(efi OT BpeMeHII. &fFf TOrO qTO6bI OueIfliTL 

:IffaqeffIle 7m, BbILUe KOTOpOrO 7 FlBJIFfeTCR ~OCTaTO'fHOii &U?f 3TOrO BWfW4IIHOti, IlCnOJIb30BaHO 

npIl6JIWfWHIle AJIH He6OJfbLUIlX 3fKL(eHTpII'fHOCTeI"l. IFoTopoe oIia3bfBaeTm OTJIIlqHbIM gJfJJ 

6OJIbIIIIlX 3HaYeHHir p II AOBOJfbHO XOpOIUIlM &TfH MkUIbIX :fHa'feffIIfi ,,. Pe3J'JLTaTbI 3TOrO 

paweTa 0mlcaHLf QlopMynoir 

T,,, z 31h’2”.9”. 

Hairaeuu, qT" :Jli~~ell'~~"'lIIO~'~b Ukiki8bIUae'L‘ ~~lU\IU~tlUZ LIIIIIHHIIC' Hi, ~CII\IIITOTkl~eCKOe 

:xfaqeHIle 1{2. Hanpclhfep, rrp~r p = 1,s 3uaqeHnt? lis a.nn 4 = 0,s OEaabmaeTcfl n %%J paa 
i,oJbrne ero :niaqelfun nnn Honbqenoro :Ia:fopa. ;)ToT :Iahle~aTeabIfbIiI pe:Iy-IbTaT npex- 

IIOJIaraeT, <ITO 3KC~eHTpWfHOCTII B IIyCTOTaX nJIOTHLIX CJIWB hlOryT 0Ka:fLIBaTb :~lfa'IIITeJIbHOe 

B.~EIRHIle Ifa 3ficnepIIhIeHTanbfIbIe :IIfaqeiiIw ~()~eiiTIIBHOrO IiO3@@IL(IIeHTa ;IIl@~y3llII, 

paCChlOTpeHHOr0 paaee. 


