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Abstract—Taylor diffusion in laminar flow along a straight pipe, the cross-section of which is an eccentric
annulus, is studied analytically by an exact method which in principle is valid for all values of time. An
expression is obtained for the apparent diffusion coefficient K, and is evaluated numerically for a wide
range of values of the eccentricity ¢ and radius ratio p.

The apparent diffusion coefficient is inherently time dependent. However, because of the complexity
of the equation that describes laminar convective diffusion in an eccentric annulus, the numerical results
are limited to asymptotic values of K ,, that is, to dimensionless times t large enough for K, to be effectively
a constant independent of time. To estimate the value 1,,, above which 7 is sufficient for this, an approxi-
mation which is excellent at large values of p, and moderately good for small values of p, is employed for
small eccentricities. The results of this calculation are correlated by the formula

1, & 31 K093,

It is found that eccentricity has an enormous effect on the asymptotic value of K,. For example, with
p = 1.5, the value of X, for ¢ = 0-5 is approximately 250 times that for a concentric annulus. This remark-
able result suggests that eccentricities in the interstices of packed beds may contribute significantly to

the scatter of the experimental values of the apparent diffusion coefficient reported previously.

NOMENCLATURE Sopfip steady and transient parts respec-
tube radius; tively of f; as defined in equation
constant given by equation (7b); (29);
constant given by equation (32b); F. constant given by equation (7b);
constant given by equation (32c); i, NEDH
constant given by equation (7b); K, =12, ..., dimensionless coefficients occur-
half the distance between poles in ring in the generalized dispersion
the bipolar coordinate system ; model, equation (16);
point concentration of solute ; K, dimensionless dispersion coeffi-
mean concentration over a cross cient based on outer radius r, as
section ; reference length; defined by
initial concentration of solute in equation (34);
slug; Np. Péclét number : 2r,v0/D ;
expansion coefficients defined by Np., dimensionless group analogous
equation (40); to Péclét number: cvy/D;
binary diffusion coefficient ; 0, origin;
distance between the centers of P, pressure;
the two circles in an eccentric e radius of inner circle of annulus;
annulus; ra, radius of outer circle of annulus;
constant given by equation (7b); L time ;
functions defined by equations U, dimensionless velocity in z direc-

(13), (19a)19c), (20) and (21);
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tion defined by equation (7a);



Greek letters
o,

B

n?
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dimensionless average velocity
defined by equation (8)
velocity of fluid in z direction ;
average velocity in z direction ;
maximum velocity in z direction ;
dimensionless velocity in z direc-
tion defined on average velocity
as basis by equation (9a);
dimensionless maximum velo-
City: Umax/Vo 5
cartesian transverse coordinates
asdefined in Fig. 1;
dimensionless axial distance de-
fined in equation (9d);
dimensionless slug length

Dz jc?v,;
dimensionless axial distance
measured from a plane moving
with the average velocity of flow,
X, =X -1
eigenfunctions defined by equa-
tions (39) and (39a);
axial coordinate ;
slug length.

n coordinate for the inner circle
in the eccentric annulus in bi-
polar system; defined by equa-
tion {6b);

n coordinate for the outer circle
in the eccentric annulus in bi-
polar system; defined by equa-
tion (6¢);

inner radiusjouter radius as de-
fined in equation (5b); also used
as dummy variable in integra-
tions ;

coordinate defined by equation
27;

bipolar coordinate; related to
cartesian coordinates by equa-
tion (4c);

dimensionless concentration de-
fined in equation (9b):

B, dimensionless mean concentra-
tion defined by equation (14);

K, Taylor dispersion coefficient ;

K;i=23. coefficients occurring in a gener-
alized dispersion model ;

Ao eigenvalues of Sturm-Liouville
problem defined byequations (39)
and (39a);

U. viscosity of fluid ;

g, bipolar coordinate related to
cartesian coordinates by equa-
tion (4d);

0, outer radius/inner radius.

p = (1)

T, dimensionless time defined in
equation (9¢);

¢, eccentricity as defined by equa-
tion (5a);

W, constant defined by equation
(32a).

G. L. Tayror [13] first published a mathe-
matical analysis of unsteady convective diffusion
in a straight capillary. He considered a tube
initially filled with fluid A into which a slug of
arbitrary length of fluid B is introduced and the
two fluids flow along the direction of the tube
axis and mix with each other. Taylor showed
that after a certain amount of time has elapsed,
the mean concentration of solute B, which is
miscible with and dispersed in fluid A, behaves
as though it were diffusing with respect to a
a plane moving at the mean speed of flow but
with an apparent diffusion, or dispersion co-
efficient, x for which he deduced the explicit
expression,
a’vy?

AT

Aris [1] used an integral approach to genera-
lize Taylor’s results to include the effect of axial
molecular diffusion which adds linearly to give

a*v,?

k=D+ .
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Aris also showed how dispersion in a more
general geometry could be analyzed by using
the method of moments. These results can be
used in conjunction with the one dimensional
dispersion model

oc,,

oC,, 0°C,,

o T TF Tz
to describe the mean concentration of B as a
function of time and axial position.

Carrier [2] and Lighthill [6] also have
analyzed the unsteady convective diffusion
problem. Carrier obtained a solution for the
case involving a periodic concentration input to
the system and Lighthill found a solution valid
for short periods of time for a step change input
in concentration.

Gill [3] generalized Taylor’s work by propos-
ing a series expansion about the mean concen-
tration to describe the local concentration
distribution. This approach also led to an
expression for the dispersion coefficient which
reduced to Taylor’s result in the limit of large
Péclét numbers and to Aris’ result for small
Péclét numbers where axial molecular diffusion
is significant.

It was a natural step to extend the concept of a
dispersion model to various other flow geo-
metries. Philip [10] analyzed dispersion in a
parallel plate duct to obtain an expression for
the dispersion coefficient. Recently Nunge et al.
[8] have analyzed dispersion in curved tubes and
channels and Gill et al. [5] solved the problem
for a concentric annulus and Jeffrey-Hamel
flows using Taylor-type dispersion models.
Nunge and Gill [9] discussed the applicability
of the results of the analyses of simple geo-
metries to modelling the dispersion process in
porous media.

Gill and Sankarasubramanian [4] have shown
recently that the series expansion mentioned
previously provides an exact solution of the
unsteady laminar convective diffusion problem
for flow in a circular tube and that the apparent
diffusion coefficient varies in a predictable way
with time. A generalized dispersion model for
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the area average concentration C, which is
given by
oC ocC i 0iC
T T T GO

evolves as a natural consequence of their
analysis. Obviously, this model contains a set
of apparent diffusion coefficients x,, the principal
component of which is x, and this coefficient is
identical to x in Taylor’s analysis. It is the
purpose of the present work to extend this
technique to the analysis of Taylor diffusion in
an eccentric annulus. An expression for the
dimensionless form of x,, K,, which appears as
one of the eigenvalues in the problem, will be
developed and the influence of the radius ratio
and eccentricity parameter on the asymptotic
value of K, will be determined. The results show
that this dispersion coefficient is surprisingly
sensitive to the degree of eccentricity of the
system. This may have significant practical
implications for transport processes in porous
media.

ANALYSIS

For the eccentric annulus, shown in Fig. 1,
the boundary conditions cannot be expressed
in cylindrical coordinates at a constant value
of one independent space variable. This difficulty
can be overcome by using a bipolar coordinate
system which is discussed in detail by Moon
and Spencer [7], and has been used in previous
analyses of transport processes in eccentric
annuli.

For fully developed steady laminar flow in
the z direction of a fluid with constant physical
properties and no transverse velocity com-
ponents, the convective diffusion equation is

?£+UE—D§2_(Z+6_2£+62_C (1)
ot ‘oz lox® ay* oz |

Consider the dispersion of a slug which is
initially z, units in length and of uniform con-
centration C,. For this, the boundary and
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FiG. 1. Eccentric annulus geometry.

initial conditions may be written as

C0,z,x,y) = Cy. |z| <3z,
|z| > 3

C0,z,x,y) =0, z, (2)
C(t,00,x,y) = 0 T

| x|,

an innerwall an outer wall J

where n represents the direction normal to the
walls. Also, by symmetry,

oc =0. (2a)
ay y=0
The bipolar coordinates (£, #) are defined by

X + iy =iccot <é—.;ﬂ> 3)

from which one may derive the following
relationships :

x = Es—shi% (4a)

V= e @
T

tan ¢ = e +2;)2c_ 2 (4d)

y? + (x — ccothp)? = ’ (de)

sinh?y’

Equation (4¢) shows that lines of con-
stant n are circles in the xy plane with center
{(c coth 5, 0) and radius (c¢/sinh 5). So, in the
(&, 1) system, the inner circle may be represented
by a line n = o and the outer circle by a line

n =4
Defining
e
¢ = (5a)
r2 - rl
y="2 (5b)
Ty

the following results are established imme-
diately

¢ = r;sinho = r, sinh (6a)
_hl+¢9)+ (1 -¢?)
cosh o = — 2 (6b)
2
cosh f = - ¢ )2; (1 +¢% (60)

Using the above transformations, Snyder and
Goldstein [12] obtained the laminar flow steady
state velocity distribution in dimensionless form
as

th
U=F+En—C°2"

o]
+ Y (4,0
=1

n

+ (B, — cothn)e™ ™} cos né )
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where
v,
U= ——F—
—c*dp (7a)
u dz |
and F, E, A,, B, are given as:
Fe acoth p — Bcotho
Ao — p) ’
coth o — coth 8
E=—1___""F
2o — B)
cotha — coth B
An= =g g
e?"* coth f — e2™ coth
Bn = eZan _ e2nﬂ (7b)

The element of area dA in the (&, n) system is
given by

CZ
dé&d
(cosh — cos &)? ¢dn

and the average dimensionless velocity is given
by

dxdy = d4 =

[ cudedy-
(coshn — cos RY
0

.
ez

(coshn — cos &)?

a

B n

2 1
" n [cosech? & — cosech? f] j j

a

Udédy
(cosh n — cos &)?

®)

where the integration with respect to ¢ is per-
formed in the interval (0, n) instead of (0, 2n)
because of symmetry. New dimensionless vari-
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ables may be defined as:
) U
. . 9
4 ve U (a)
C
= 9
0 C. (9b)
Dt
T = 9¢)
X =22 od)
c“vg

so that equation (1), and the boundary condi-
tions (2), may be transformed to the bipolar
system and represented in dimensionless form
as:

00

5 VG ri) = (cosh 71 — cos ¢)?
620 0%0 1 0%
{acl " }+ Mo (10
with
60, X,¢,n) =1, IX|<3Xx
80,X,&m=0, |X|>3X,
&z, 0, &, 1) =
oo _ - an
on |- on|n=p
o0 a0
= =— =0
0¢ | e=0 ]
where
B CUO 1
Np, =7 = (3 sinh B)Np, (12a)
and N, is the Péclét number defined as
_ 2r,v,
Np. = =22, (12b)
Now, let
0 = 0,(z, X) + Z fié, '1) (13)

(7X 8
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where the dimensionless mean concentration

0, is,
" B

J‘ Bc*dédy

: 0(cosh n — cos ¢&)?
c2dédy
(cosh n — cos é)
6dédn

2
~ 7 [cosech?s — cosechzﬁ]jj(cosh 7 — cos &)
a0

Onlt. X) =

(14)
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and integrated over the cross section of the
eccentric annulus. If one then introduces equa-
tion (13) into the result, the following generalized
dispersion model is obtained :

6, N\ . . 06,
El Z Ko oxr

i=1

(16)

By differentiating this with respect to X, k

times, we obtain
X +F
E oitke,,
= K (T) XH-L :

i=1

It should be emphasized that the dispersion

ak+ 19
otoX*

(17

When equation (13) is substituted into equa-
tion (10), the result is

6, N (of. 6, . &6, 2,
B +Z{‘a? axt T 616X"} Y ax
k=1

2
= (coshn — cos QZ{Z(Zéf; +
k=

= okt 1,
k=1

Fn) 1 220,
oX (" N, 2 )ox?

62f>

= ak+29m
ka 5)?*_2}' (15)
r=1

To develop an exact dispersion model, equa-
tion (10) is multiplied throughout by the ele-
mental area

c2dédn
(cosh n — cos &)?

model, given by equation (16), is a direct conse-
quence of integrating the convective diffusion
equation (10) and does not involve any arbitrary
assumptions.

Equations (16) and (17) are substituted into
equation (15) to give, after some rearrangement,

af1 _ 2 62f1
{—6; — (coshn — cos &) (652

+—f>+V+K}ae

X

i & 1 )%,
+{ /2 — (cosh — cos &)? (_a_—éj; + a_r{2>+ Vi,+Kfi + K,— __pe’i}EX_z
0 ez s (Farz , Phiis
+§‘:{ 6f»——(coshr] cos &) ( o2 + o’

1 0,
+ Vet +ZKifk+2—i - N;—E S 5a

k+2
=0 (18)

i=1
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with the understanding that f, = 1. If equation
(18) is satisfied by setting the coefficients of
(0*0,,/0X*) tozerofork = 1,2, 3. .. the following
system of equations is generated :

% _ RS Ll N /)
pr (coshn — cos &) {662 + 2=
—V(&n) — K1) (19a)
o _ _ 2 *f 2f2
P {cosh# — cos &) {652 + =
1
- Vg + Nt
— Ki(t)f; — Ky(r)  (19b)
and
6f1.+2 2 f:k+2 afl.+2
“ar = (cosh# — cos &) { 22 + on? }
1
- Ve + Wfk
k+2
= Y Kifira-k =1,23... (19¢)
i=1

From the boundary conditions (11), the fi(z, &, 1)
must satisfy the following conditions:

£0,&n) =0 (20)
%) % _g
O lg=a 0N ly=p
(21)
w| | _,
~ 9, '

In addition, the definition of 6, requires that

Bn
f filr, & )dédn

(coshy — cos &)*
a0

= 0. (22)

If we multiply equation (19a) throughout by
1

(cosh  — cos &) integrate with respect to &

from & = 0 to ¢ = 7 and with respect to # from
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n=a to n = fB, invoke the conditions repre-
sented by equations (21) and (22), we get

B=
ﬂ(wc n)+K(rg dzdn = 0.

coshn — cos ¢)
a0

(23)

By using equations (8) and (9a) in conjunction
with equation (23) one can show that

K,= -1 (24a)

If a similar procedure is applied to equations
(19b) and (19c) we get the following expressions
for the eigenvalues K, and K, ,,k = 1,2,...as

1 2 1
Ko(7) = _z
27) Np,* m [cosech?x — cosech?f]
fi 24b
J(cosh n — cos §)? dedn )
a0
and
K -2 1
+2(0) = 7 [cosech?a — cosech?f]
An
Vi1
24
j:[(cosh n ~ cos &) dedn 24
a 0
k=1,23...

Since it is difficult to solve for f,, or the
higher order functions, and since it has been
shown by Gill and Sankarasubramanian [4]
that truncating the series in equation (16) after
the first two terms causes a negligible amount
of error for the case of a straight tube, we will
adopt the same procedure here. The truncated
form of equation (16) after substituting for K,
from equation (24a) is:

20, 06, o2,
o Tox - KWgr

Except for the time dependence of K,, which
makes it valid for small 1, equation (25) is the
equation Taylor used in his original work. This

(25)
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is to be solved with the boundary conditions

= <
0,0, X)=1, |X|<ixX, 26)
0,0, X)=0. |X| > 13X,
and J
0,1, 0 = 0.
If one defines
{= (f) K,(y)dy 27
the well-known solution to equations (25) and
(26) may be written as
1[ X, + X, - X,
6, = = |erf{* =2 +e f{ H 28)
SN ek v K
where
Xl = X — T. (283.)

Equation (24b) shows that K, depends on
f1, but solving for the complete f,; function
analytically is a difficult task and so we will
solve only for the steady-state part, f; , of this
function. At a later stage, an approximate
theory will be given which enables one to
determine the magnitude of t necessary for
fi = f,,for small eccentricities, and we will thus
determine the region of applicability of the
present analysis. Under these conditions, the
dispersion coefficient K, has reached its asymp-
totic value and the constant dispersion coeffi-
cient model is valid.

The f, function may be separated into steady
and transient parts, such that

fl = f:sl(§9 ”) + f;,(ra é’ r’) (29)

The equation for f;, is then, upon using the
value of K, from equation (24a),

N V-1
o082 " n?  (coshn — cos &)?

(30)
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The appropriate boundary conditions are

L)%,
Whee s l (31)
aé 5=0 aé iTr

Sankarasubramanian [11] has solved equa-
tion (30), along with equation (31) by using a

cosine transform techmque in the & coordmate
The solution is

n x
—_ 1 _ V(é’a ?) -
Ju= n[w * J(” y)_((cosh y — cos &)
[ 0

© n
2 1
z A — |a—ny

n=1

dé'dy

[V(é y) — 1] cos ng'd¢’
(cosh y — cos &')?

0
1 n
— e
+ (AZ,, znje

a

y “[V(é', y) — 1]cos n&'d&
(coshy — cos &')?

o)

dy) e ""} cos né

(32)
where
g =
2(oz j{vz - 29p - &%)
Vig,y) -1 )
(cosh y — cos &)? de'dy  (32a)

B

1 n —-n
Aln = m[ez ﬁje v

-2

j[V(é ,7) — 1] cos né’dé,dy

(coshy — cos &)?
0
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+j(e
a

and

nyjl‘[V(C" )’) - 1] cos né'

(coshy — cos &')? dé'd)] (32b)

0

AZII = eZnaAI". (320)

S, (&, n), as given in equation (32), can be used
in equation (24b), to determine asymptotic
values of the dimensionless dispersion coeffi-
cient K,.

DISCUSSION OF RESULTS

K, was evaluated numerically for ¢ ranging
from 0-005 to 09 and p ranging from 1-25 to
100. In these computations, the contribution to
K, due to axial molecular diffusion, represented
by (1/Np,'%), has been omitted since this contri-
bution can be added directly to the values
presented.

K, was evaluated from equation (24b) by
using double precision and Simpson’s rule for
the numerical integrations. The number of
significant figures was determined by using
different step lengths at the extreme values of
the parameters. The accuracy of the dimension-
less velocity and the f;, function was estimated
by varying the number of terms used in the series
for these functions.

At the higher eccentricities, both the series for
the f,, function and that for the dimensionless
velocity converge very slowly. Also, a larger
number of steps is required to obtain sufficient
accuracy in the numerical integrations. This
requires prohibitively large amounts of com-
puter time, and so only a limited number of
results were obtained for ¢ = 0:9. At this value
of eccentricity this problem is very severe and
the results obtained are accurate only to within
5 per cent, but this is satisfactory to indicate
trends reliably.

The dimensionless dispersion coefficient K,
is based on cas reference length,

kD
K2 = 3 2
C Vg

(33)

Because its physical significance is much clearer
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for presentation and comparison purposes, the
outer radius, r; is chosen as the reference length
and a new dimensionless dispersion coefficient
K,'is defined as

kD

K, =
2 2
LI

s = K, sinh?p. (34)
The axial diffusion contribution which has been
omitted, correspondingly becomes

1 4
Np,? Np*”

The calculated values of K, have been
tabulated in [11] and are plotted against p
with ¢ as the parameter in Fig. 2. It is seen that
eccentricity can have an enormous effect on the
dispersion process. The values of K, for the

sinh?f =

5x10% 3
. 10
3x10% 2 8-805
3 00l
2x10% 4 002
5 005
6 010
7 020
oY 8 050
5:10%
3“0!— \
2x10%
. /—
= 104
x
-
X
504

ko] o

20

[

\

T T

2 3 5 10 20 30 50

F1G. 2. Behavior of dispersion coefficient, K,”x 10%, as a
function of radius ratio, p, and eccentricity, ¢.
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concentric annulus from the results of Gill et
al. {5] also are plotted in the same figure.

¢ =0 cannot be used for calculations in
bipolar co-ordinates since this is a singular
point for the transformation given in equation
(3). However, the results obtained for ¢ = 0-005
by the present approach are in excellent agree-
ment with those for ¢ = 0 given in [5] for all
radius ratios investigated.
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eccentric annulus with ¢ = 0-1 and 0-5 respec-
tively; p = 5 in all cases. The eccentric annulus
profiles are given at asectionat & = Qand & = 7,
that is, on the X axis.

Note that the velocity profiles become more
asymmetric as the eccentricity increases. Differ-
ences in the velocity at different angular loca-
tions, and over the cross section at any one
angular location become more pronounced

7B | | 7] s
é¢ éqﬁ é %

N 20— /

. 7Z

29 NN I

s N N

S U 7 7

0 016 0/ 0‘5 0 10 <}l5 /g &5 0 10 éé 0!5 10

Dimensionless radius,

{a)

r/r,

{b) {c)

Fig. 3. Comparison of velocity profiles for increasing
eccentricity for a given radius ratio, p = 5 at sections at
¢ =0and¢ = n.

Although the complexities of the flow pattern
in an eccentric annulus make an exact inter-
pretation of the results represented in Fig. 2
extremely difficult, an attempt is made here to
explain qualitatively, the behavior of the dis-
persion coefficient.

The first characteristic of interest is the
increase in the value of the dispersion coefficient
with increasing eccentricity for any radius ratio.
This is explained by considering the velocity
profiles shown in Fig. 3. Figure 3a gives the
dimensionless velocity distribution for a con-
centric annulus and Figs. 3b and c¢ for the

with increasing eccentricity and cause an in-
crease in the value of the dispersion coefficient.
However, as the velocity differences become
greater with increasing eccentricity, transverse
diffusion starts playing a more important role
in suppressing the extent of axial dispersion and
above ¢ = 0-5, the dispersion coefficient shows
a definite decrease with increasing eccentricity
as confirmed by the limited results available at
¢ = 09, It is seen also that the relative increase
in the dispersion coefficient with increasing
eccentricity is far greater for smali p than for
large p. The reason is as follows: for a fixed
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value of the outer radius r,, the radius of the
inner circle and hence its size get smaller with
increasing p. A displacement of this inner circle
from a concentric position when it is smaller
has less effect on the velocity field and therefore
on the dispersion process. In fact, when p = 100,
the inner circle is but a spot inside the outer
circle and there is practically no effect on the
dispersion coefficient as ¢ increases from O to
01 as observed in Fig. 2.

Another characteristic which should be noted
in Fig. 2 is the minimum exhibited in the plots
for ¢ = 0-05, 0-1 and 0-2. Such a minimum may
very well exist for other eccentricities also, but
it was not observed in the range of radius ratios
investigated. Note also that this minimum shifts
toward larger values of p as ¢ increases.

In an effort to explain this behavior, the
dimensionless velocity, V., = (Umax/Vo) Was
computed for the same range of the parameters
¢ and p for which K, has been calculated. The
plot of V., vs. p with eccentricity ¢ as para-
meter is presented as Fig. 4. It is seen that the
behavior of K3, and V,,, vs. p is similar for each

30

h: S

DB~

000000

an—00
b4

29

3M7
2/

ysd ) { i L

2 3 5 10 20 30 50 i

P

FiG. 4. Behavior of dimensionless maximum velocity, V.
as a function of radius ratio, p, and eccentricity, ¢.
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value of eccentricity and in each case the curves
exhibit minima at about the same value of p.
Since the extent of axial dispersion, as pointed
out previously, depends strongly on velocity
differences over the cross section and since the
ratio of maximum velocity to average velocity
is an index of such differences, the dispersion
coefficient behaves in sympathy with this ratio.

A qualitative perspective of the magnitude of
the effect of eccentricity on the dispersion process
can be obtained from Fig. § in which eccentric
annuli are drawn to scale and the respective
values of K,’ for each annulus is shown. Most
dramatic, perhaps, is the 25-fold increase in the
dispersion coefficient which occurs when ¢ is
changed from 0 to 01 at p = 1'5 and the eccen-
tricity is barely perceptible by eye.

An important objective of studies of disper-
sion in relatively simple geometries is to suggest
effects which may be significant in very compli-
cated systems such as packed beds which occur
in commercial applications. It seems relatively
safe to speculate, on the basis of the very large
effects observed in the present work, that eccen-
tricities in the interstitial flow passages created
by the arrangement of the particles in packed
systems may contribute significantly to the
scatter of the data which have appeared in the
literature,

APPROXIMATION FOR SMALL
ECCENTRICITIES

A deeper understanding of dispersion in
eccentric annuli can be obtained if the mathe-
matical aspects of the problem are reduced by
considering an important asymptotic case. In
the limiting case as ¢ — 0,

8C 8C _.3*C &C
=T and e

FT T R O D
where @ is the angular coordinate in a cylindrical
coordinate system with its origin at the common

center of the two circles. For a concentric
annulus, due to angular symmetry,

c_&cC

B ="
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WWJS

+5131x1074 *5
=0

%

13312104

X3=89-52x1074

e 14272107

Aye 4615x1074

N

F1G. 5. Scale drawings illustrating the effect of radius ratio,
p.and eccentricity, ¢, on dispersion coefficient, K.

and for the eccentric annulus with small
eccentricities, the ¢ dependence may be neg-
lected. Accordingly, the £ dependent part of the
f;, function is small and may be neglected in
using equation (24b) to calculate K,. This
approximation was used to calculate K, for
small eccentricities in the region ¢ = 0-005-0-1;
it was found, as expected, that the approximate
values approach the exact value as ¢ - 0. It
was also found that the approximation is
increasingly better for larger p. Table 1 gives
some sample values of K,’, expressed as a
percentage of the exact value, which were cal-
culated using the small ¢ approximation. This
approximation will now be used to establish

Table 1. Dispersion coefficient K,' calculated using approxi-
mation for small eccentricities expressed as a percentage

of the exact value

. 1-25 50 100-0
O\
000s 8292 998 9998
0-02 233 96-88 99-67
01 124 55-54 9248

criteria for the dimensionless time required for
the steady state dispersion coefficient to be
valid. In the calculation of K,, only the steady
state part, f;,, of the f; function has been used
and therefore the results apply only for large
values of time. Consequently it is desirable to
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estimate the magnitude of t required for the
steady state function to be dominant so that
K, becomes independent of time. To do this we
shall employ the small eccentricity approxima-
ttonto solvefor f;,

MINIMUM TIME REQUIRED FOR THE
DISPERSION COEFFICIENT TO BECOME
CONSTANT

The equation for the transient part, f, , of the
/, functionis:

af;‘l _ 2 2 11 zf;i:l
P (coshn — cos §) [652 + . (3%
This is a very difficult equation to solve exactly
and so we resort to approximations. For the
case of small eccentricities, both cosh o and
cosh B are very large compared to unity [see
equations (6b) and (6¢)] which is the upper
bound on Icos Cl and so, cos £ may be neglected
compared to cosh 7. In addition, (6%f,,/0¢%) may
be dropped for reasons discussed in the last
section and so we may write, for small eccen-
tricities.

s 2, Of
5 cosh?n on? (36)
with the conditions,
ot of,
L =21 =0 37
af'] n=a 6'7 n=4 ( )
£ 0,m) = — £, ()

where the ¢ dependent part of f; also has been
neglected. With these approximations, the solu-
tion for f; can be written as

Ju = ;d ne * Y1) (38)
where Y, satisfies
Y,” + A,sech’n ¥, =0 (39)
and
Y (@) = Y)(B) = (39a)

Equations (39) and (39a) constitute a Sturm-
Liouville system which will give rise to the
eigenvalues 4,, and eigenfunctions Y, The
expansion coefficients d, will be given by

B
{f.. Y (msech?n dn
d, = —2

)
| Y,2(n) sech®n dn

(40)
The approximate form for f;, which neglects ¢
dependence obeys
[f.n) sechn dn = 0 @1)
which is also the result one would obtain from
equation (22) for small eccentricity.

For the system of equations (39) and (39a),
2o = 0and Y, = 1 and therefore from equations
(40) and (41) d, = 0. Consequently, for large
values of dimensionless time, we may truncate
the series for f,, and obtain

;/;1 = dle—llt )Il(r’)'

This approximation was used to compare the
relative magnitudes of |f,, | and |f,, | averaged
over the interval («, f) to determine the value
of dimensionless time t when the transient
becomes negligible compared to the steady
state solution. The value of T so obtained is the
minimum dimensionless time, t,, required for
the dispersion coefficient to assume a constant
value independent of t. The results obtained by
solving equations (39) and (39a) can be correlated
with reasonable accuracy by the following
approximate relation

1, ~ 31 K,%%

(42)

(43)

Since eccentricity may increase K, by several
orders of magnitude, it also increases markedly
the residence time required for a constant
coefficient dispersion model to apply.

CONCLUSIONS
As a result of the present study, the following
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observations may be made about the behavior
of the dispersion coefficient.

1. The steady state dispersion coefficient,
which is the asymptotic value of K, for large
time, increases with increasing eccentricity ¢
and reaches a maximum at a value of ¢ above
0-5: then it decreases with further increase in ¢.
Such behavior is exhibited for all radius ratios
investigated. However, the dispersion coefficient
is much more sensitive to eccentricity for small
values of radius ratio p; that is, the sensitivity is
greater when the inner circle of the annulus is
relatively large. The flow rate in an eccentric
annulus for a given pressure gradient exhibits
similar behavior, but it is not as dramatic as it
is for the dispersion coefficient.

2. For values of ¢ between 0-05 and 0-2, the
dispersion coefficient, when plotted against
radius ratio p, at first decreases with increasing
o, reaches a minimum at a certain value of p,
and then starts increasing as p is increased
further. The location of this minimum shifts in
the direction of increasing p as eccentricity
increases. Such a minimum may very well
exist for ¢ < 005 and ¢ > 02 but it is not
observed in the range of radius ratios investi-
gated here. Interestingly, it turns out that the
above behaviour is in sympathy with that of the
ratio (U, /vo) With ¢ and p.

3. For small eccentricities, some approxima-
tions may be made which are excellent for large
p and enable one to estimate the minimum
dimensionless time 7,, above which K, is effec-
tively constant.

4. The extremely large effect of eccentricity
in annuli on the magnitude of the dispersion
coefficient suggest that eccentricities in the

interstitial flow passages created by the arrange-
ment of particles in packed beds may contribute
significantly to the scatter of the data that have
been reported in the literature.
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DIFFUSION DE TAYLOR AU SEIN D'UN ECOULEMENT LAMINAIRE DANS UN
ESPACE ANNULAIRE EXCENTRIQUE

Résumé—Grice a une méthode exacte, qui en principe est valable pour toutes les valeurs du temps, on
étudie de fagon analytique la diffusion de Taylor dans un écoulement laminaire le long d’un tube rectiligne
dont la section droite est un anneau excentrique. on obtient une expression du coefficient K, de diffusion
apparente et on I'évalue numériquement pour un large domaine de I'excentricité ¢ et du rapport des

rayons g.

Le coefficient de diffusion apparente est dépendant du temps. Cependant, a cause de la complexité de
I’équation décrivant la diffusion convective laminaire dans un anneau excentrigue, les résultats numérigues
sont limités & des valeurs asymptotigues de K, correspondant & des temps adimensionnels t suffisamment
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grands pour que K, puisse étre effectivement une constante indépendante du temps. Afin d’estimer la
valeur 7, au dessus de laquelle 7 correspond a cette condition on emploie, pour des petites excentricités,
une approximation qui est excellente pour des grandes valeurs de p et modérément bonne pour des petites
valeurs de p. Les résultats de ce calcul sont reliés par la formule:

T, = 31 K§:93.

On montre que I'excentricité a un effet considérable sur la valeur asymptotique de K,. Par exemple, avec

p = 1,5¢et¢ = 0,5, la valeur de K, vaut approximativement 250 fois celle relative 4 un anneau concentrigue.

Ce résultats remarquable suggére que des excentricités dans les grappes peuvent contribuer de fagon

significatrice 4 la dispersion des valeurs expérimentales du coefficient de diffusion apparentes rapportées
auparavant.

TAYLOR-DIFFUSION IN EINEM EXZENTRISCHEN RINGSPALT BEI
LAMINARER STROMUNG

Zusammenfassung—Es wird die Taylor-Diffusion bei laminarer Strémung entlang eines geraden Rohres
mit exzentrischem Ringspaltquerschnitt analytisch mit Hilfe einer exakten Methode untersucht, die im
Prinzipfiir alle Zeitpunkte giiltig ist. Man erhilt eine Formel fiir den scheinbaren Diffusionskoeffizienten
K, die fiir einen weiten Bereich der Exzentrizitit ¢ und des Radienverhaltnisses ¢ numerisch ausgewertet
wird.

Der scheinbare Diffusionskoeffizient ist an sich zeitabhingig, es werden jedoch die numerischen
Ergebnisse wegen der Komplexitit der den Fall laminarer, konvektiver Diffusion in einem exzentrischen
Ringquerschnitt beschreibenden Gleichungen auf asymptotische Werte fiir K, beschrinkt, dh. auf
dimensionslose Zeiten 7, die so gross sind, dass K, effektiv eine von der Zeit unabhiingige Konstante wird.
Zur Abschiitzung des Wertes t,,, oberhalb dessen t dieser Beziehung geniigt, wird fiir kleine Exzentrizitdten
eine Niherungsbezichung verwendet, die fiir grosse Werte von ¢ missig gut geeignet ist. Die Ergebnisse
dieser Berechnung lassen sich durch die Formel

T, x 31 K,093
korrelieren. Es zeigte sich, dass die Exzentrizitit einen enormen Einfluss auf den asymptotischen Wert
von K, hat. Zum Beispiel ist fiir ¢ = 1,5 und ¢ = 0,5 der Wert von K, ungefihr 250 mal grosser als der
fiir einen konzentrischen Ringspalt. Dieses bemerkenswerte Ergebnis ldsst vermuten, dass Exentrizitdten
in den Zwischenrdumen von Festbetten ganz betréchtlich zur Streuung der kiirzlich mitgeteilten experi-
mentellen Werte fiir den scheinbaren Diffusionskoeffizienten beitragen kénnen.

ALY 3L TENJIOPA B JIAMIIHAPHOM [IOTOKE YEPE3
SKCHEHTPUYECKHIT HOJILIEBOI 3A30P

Annoranua—lccienoBasnach aHaJNTHYeCkl ¢ [IOMOILIO TOYHOTO MeTURY, KOTOPHIi B
NpHHIHITE ABIAETCA TOYHBIM [JIA BeeX 3HaveHuUil BpeMenu, auddysus Teiinopa B rTaMuHapHOM
NOTOKe Yepe3 NpAMylo TpyOy, NOMepeuHbIM CeueHileM KOTOpPOI ABJAETCA OKCLeHTPHYECKUil
Ko:1b1eBoil 3a30p. [Toayueno BulpaskeHue AA oddertiusioro koadduuneunra audeysnn He n
PACCUMTAHO YHCIIEHHO JIJIA LWIHOKOTO FUANa’oHa 3HaveHHi SKCIHeHTPUYHOCTH ¢ 1l OTHOILEHUA
paguyca p.

AfderTuBHOMY KOoa(puUHeHTy FPPYsHI NpHUCYILA BABHCHMOCTD OT BpeMeHH. OIHAKO,
113-32 CJIO’KHOCTH YDABHEHHs, OINHCHIBAIOIIETO JAMIHAPHY® KOHBEKTHBHYI AuQpysuio B
OKCIIEHTPHYECKOM KOJIBIIEBOM 3a30pe, YMCJIeHHBle pe3yJbTaThl OTPAHMYEHHl J0 ACHMIITOTH-
yeckux 3HadeHuit Kz, 1.e.10 6e3pasMepHLEIX BpeMeH 7, JOCTATOYHO GOJbIUMX JJIA TOrO 4TOGHI
Kz Gblio mocrosasHON BejuuiHOW, He 3aBucAmeil ot Bpemenu. JaA Toro 4tolbl 0LEHUTH
3HQYEHHE T, BBIUIE KOTOPOTO 7 ABJIAETCA JOCTATOYHO AJIA 3TOr0 BEJTUMIHOMN, 1CMIOb30BAHO
npubauskene AuA HeGONbUINX JKCUEHTPIYHOCTEH, KOTOpOe OKAa3hIBAeTCA OTIILMYHBIM AJIA
GOJIBIINX 3HAYeHHI p U JOBONBHO XODPOIUMM JIH MaJbiX 3HauYeHUi p. Pe3yiabTaTsl HTOro
pacyera oruicansl Popmyoit

i X 31R0.93,

HanLBHO, 4TV DRCHeHTPINHOCTh URABbIBaeT I'pOMYLHOC BulllHHLUE Ha aCuMUTOTHYECROe
suauenne Ke. Hanpumep, npu p = 1,5 suaveunne K> ana ¢ = 0,5 okasmBaerca r 250 pas
{oabllie ero 3HAYEHUA [JIA KOJNbLUEBOIO 3a30pd. OITOT 3aMeuaTeIbHBIN pesyabTar npel-
1oJ1araeT, YTO SKCUEHTPUYHOCTH B 1IIyCTOTAX IJIOTHBLIX CJIOEB MOI'YT OKA3bIBATh 3HAUMTETbHOE
BJAUAHIE HA HKCIEPUMEHTANbHBE 3Hadenlst odderTnBHoro roodPdumnerra Iupdysmi,

PacCMOTPEHHOTO paHee.
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